轴承知识
陶瓷球轴承在数控机床主轴单元中的试验研究
2007-11-05 图1 高速主轴单元结构简图
试验测试结果分析 主轴轴承的高速性能 轴承在工作时,轴承滚动体与套圈间将产生接触应力,并在接触表面上形成接触应力椭圆。根据Herts接触理论,轴承滚动体与套圈间的接触椭圆的长、短半径为 a=ma[ 3Q ( 1-c2 + 1-s2 )]1/3 2Sr Ec Es (1) b=mb[ 3Q ( 1-c2 + 1-s2 )]1/3 2Sr Ec Es (2) 式中:ma、mb为与椭圆偏心率有关的系数:d为球与套圈的弹性趋近量:Q为作用在滚动体上的外加总负荷:q0为球与套圈的接触应力:E为材料的弹性模量:为材料的泊松比:c、s为下标,分别指陶瓷轴承和钢球轴承的相关参数:Sr为主曲率和。代入陶瓷材料的性能参数,可得 q0c=1.112q0s (3) dc=0.896ds (4) 由式(3)、式(4)可看出,低速时,陶瓷球轴承中陶瓷球与钢套圈的接触应力为钢轴承的1.112倍,变形为钢轴承的89.6%。在高速条件下,轴承不仅受到来自外力的作用,还受到轴承内部滚动体离心力的作用。离心力的作用,将使接触面积、接触应力和弹性变形增大。由于滚动体(球)的密度不同,在陶瓷球轴承和钢球轴承中的接触应力也会不同。在陶瓷球轴承中,用陶瓷球取代钢球,陶瓷材料的密度与热膨胀系数比轴承钢小,弹性模量大。高速运转条件下,来自轴承内部的负载(离心力、陀螺力矩等)比钢轴承小,因此,陶瓷球轴承的极限转速可以得到提高,如Si3N4球轴承的极限转速比钢轴承提高了60%左右。 图2、图3是根据两种高速电主轴的实验数据绘制的温升特性曲线。由图可见,A型主轴转速由2000r/min上升至极限转速30000r/min时,钢轴承温度由4℃上升至35℃:主轴转速由2000r/min上升至转速40000r/min时,陶瓷球轴承温度由35℃上升至43℃,为防止温度过高损坏陶瓷球轴承,停止继续升高转速的试验。实验中显示,在相同温升水平上,即温升为35℃时,装有陶瓷球轴承的电主轴转速比钢轴承型主轴提高约30%。 在B型电主轴中,应用陶瓷球轴承,电主轴的实际转速比使用钢轴承时的极限转速相应提高约30%~50%。 从上述试验结果和理论分析可知,陶瓷球轴承比钢轴承更适用于高速运转条件。
图2 A型高速电主轴的温升特性 图3 B型高速电主轴的温升特性 图4 B型电主轴不同供油条件下的温升
主轴轴承的温升 由图2可见,A型主轴转速小于15000r/min时,两种轴承的温升基本相同。当转速大于15000r/min时,陶瓷球轴承的温升明显低于钢轴承。钢轴承温升增长率比陶瓷球轴承的快。 由图3可以看出,B型主轴的轴承温升的总体变化趋势与A型电主轴相似。但主轴转速较低时,陶瓷球轴承的温升略高于钢轴承,温升增长率比钢轴承小。当转速5>17000r/min时,才能显示出陶瓷球轴承的低温升特性。脂润滑条件下陶瓷球轴承的运转速度和油雾润滑时钢轴承的运行速度相当。实验中发现,B型陶瓷球轴承达到热平衡时的温升和所需时间,与A型钢球轴承达到热平衡时的温升和所需时间相近。 图4所示是不同供油量条件下的主轴轴承的温升曲线,从中可见,陶瓷球轴承Z低时所需的供油量低于钢轴承,并且当突然中断供油时,陶瓷球轴承能维持一段时间的正常工作,而钢轴承在较短时间内就会烧坏。 由上述可知,不论用油雾润滑还是脂润滑,在高速或润滑不足时,陶瓷球轴承的温升都小于钢轴承,陶瓷球轴承的寿命高于钢轴承。分析认为:①HIPSN的密度仅为轴承钢的40%。由于陶瓷球产生的离心力和陀螺力矩小,使陶瓷球轴承发热量少。②陶瓷和钢组成的摩擦副的摩擦系数比钢和钢组成的摩擦副的摩擦系数小,产生的热量少,温升也低。③轴承在装配时需要预紧,预紧力越大,变形和发热越多,轴承温升也越快。轴承高速运转下,轴承承受的总负荷包括初期预紧力和轴承内部负荷。内部负荷由离心力和热膨胀差引起的。轴承工作时的预紧力大于装配时的原始预紧力,从而使摩擦发热增加,轴承温升增大。由于HIPSN 陶瓷材料的热膨胀系数仅为轴承钢的25%,故当转速提高时,陶瓷球轴承的温升值比钢轴承小得多。资料表明,陶瓷球轴承的内圈材料采用热膨胀系数比轴承钢小20%的不锈钢、渗碳钢等材料,可以有效降低轴承的温升。 主轴振动频谱分析 使用高灵敏度的压电晶体传感器,运用离散傅立叶原理进行信号变换计算,图5、图6是利用PDB测得的A型电主轴振动频谱。由图5可见,电主轴前端振动加速度波动较大,导致电主轴的运转精度降低、刚度下降。由图6 可见,装有陶瓷球轴承的电主轴前端振动加速度变化极小,主轴运转的动态精度高。对比两种类型电主轴表明,使用陶瓷球轴承,可以有效减少电主轴的振动,提高电主轴的运转精度和刚度。
图5 装有钢轴承电主轴前端振动频谱 图6 装有陶瓷球轴承电主轴前端振动频谱
存在的问题与对策 试验中发现,装有陶瓷球轴承的两种类型的电主轴,在转速较低时,都存在着运转初期(低速时)刚度差、精度低的问题。 分析认为,主要由轴承间隙和工作预紧力的变化影响。低速时,预紧力大,轴承间隙小,刚度高:高速时,轴承内部因高速运转产生较大负荷,二者叠加,使轴承高速时实际预紧力远超过初期预紧力。导致轴承温升高,使用寿命低,易出现早期烧结损伤。为延长轴承寿命,要求陶瓷球轴承的初期预紧力要小一些。但初期预紧力过小,主轴启动时,陶瓷球轴承间隙大,运转时变形大、刚度差。使电主轴振动加大,严重影响电主轴的加工精度。解决方法是研究开发轴承预紧力可变换机构。主要的措施有两种:①实施定位置预紧力变换:②重视运转精度,低速时,实施定位置预紧,高速时,采用预紧力可变换机构。 3 结束语 以上理论与实验分析表明: 在相同条件下,陶瓷球轴承比钢轴承更适用于高速运转条件。将陶瓷球轴承应用于高速主轴单元的设计、制造中,可以有效提升主轴的极限转速,减少高速主轴的振动,提高主轴的运转精度和刚度。 应用陶瓷球轴承,可以延长电主轴的使用寿命,简化与之配套的润滑系统。但要解决低速运转条件下,陶瓷球轴承刚度差、精度低的问题。